Code No.: 17341 S N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

B.E. (E.E.E.) VII-Semester Supplementary Examinations, May/June-2023 **Digital Signal Processing**

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	T	M	L	CO	no.
1.	Sketch the signal u[n]+u[-n-1].	-	-		CO	
2.	Differentiate digital and discrete signal.			3	2	1,2,3,5
3.	Compare circular convolution with linear convolution.		2	1	1	1,2,3,5
4.	List the properties of twiddle factor.	1	2	2	3	1,2,3,5
5.	Differentiate Chebyshev type – I filter with type – II filter.	12	2	2	2	1,2,3,5,
6.	Sketch the graph between digital and analog angular frequencies in bilinear transformation.	2 2		2	4	1,2,3,5,
7.	Define group delay.	1 2		2	4	1,2,3,5,
8.	List the different possible types of investigation	2		1	4	1,2,3,5,1
	Passe response miters.	2		1	4	1,2,3,5,1
9.	Differentiate Dual access RAM and single access RAM	1	,			
10.	Among voltage regulation and current regulation in DSP based control of buck – boost converter, which regulation is given priority and why?	2 2		3	5	1,2,3,5,1 1,2,3,5,1
	Part-B ($5 \times 8 = 40 \text{ Marks}$)					
1. a)	Test the properties causality, shift invariance and linearity for the system described by the difference equation $y[n] = x^2[n] + x[n^2]$.	3	2		2	1,2,3,5,12
6)	A system is given by the difference equation $y[n]-3y[n-1]-4y[n-2]=x[n]+5x[n-1]$. Obtain response of system for the input $x[n]=2^nu[n]$ with initial conditions $y[-1]=1$ and $y[-2]=2$.	5	2		2	1,2,3,5,12
2. a)	Compute convolution of the sequences $x[n] = \{5, 0, 4, 0, 3, 0, 2, 0\}$ and $h[n] = \{1, 0, 1\}$ using overlap-add method.	5	3		3	1,2,3,5,12
	Obtain linear convolution of the sequences $x[n] = \{2, -1, -2\}$ and $h[n] = \{-1, 2\}$ using Discrete Fourier Transform.	3	3	:	3 1	1,2,3,5,12
	specifications.	5	3	4	ļ 1	,2,3,5,12
P	Passband edge: $\omega_p = 0.5\pi$ rad, stopband edge: $\omega_s = 0.2\pi$ rad, passband ttenuation: $A_p = -2dB$, stopband attenuation: $A_s = -15dB$. Assume T=1					
b) 0	Obtain the parallel form realization of IIR filter with system function					
F	$H[z] = \frac{(2+z^{-1})(5+0.2z^{-1})}{(1-z^{-1}+0.5z^{-2})(1+z^{-1}-0.3z^{-2})}$	3	3	4	1,	2,3,5,12

Code No.: 17341 S N/O

	Using Bartlett window of order N=7, design a Finite Impulse Response	5	3	4	1,2,3,5,12
14. a)	filter with desired frequency response				
	$H_{d}(e^{j\omega}) = \begin{cases} e^{-j3\omega}, \frac{-\pi}{4} \le \omega \le \frac{\pi}{4} \\ 0, \frac{\pi}{4} \le \omega \le \pi \end{cases}$				
b)	Obtain the frequency response of a linear phase Finite Impulse Response filter with symmetric and odd length impulse response.	3	2	2	1,2,3,5,12
15. a)	Draw the block diagram showing the peripherals in TMSLF2407 DSP	5	1	5	1,2,3,5,12
b)	Controller and explain them. Using a neat block diagram, explain multiplexing functionality in	3	1	5	1,2,3,5,12
16. a)		3	1	2	1,2,3,5,12
b	(ZSR). Determine Fast Fourier Transform of the sequence x[n] = {1, 0, 2, 0, 3, 0, 4, 0} using Decimation in Frequency algorithm.	5	3	2	1,2,3,5,12
17.	Answer any <i>two</i> of the following: Compare Infinite Impulse Response and Finite Impulse Response filters.	4	2	4	1,2,3,5,12
a	Compare Infinite Impulse Response and I mile Impulse Response using window Explain the procedure to design a Finite Impulse Response using window	4	1	4	1,2,3,5,12
	technique. Using a neat block diagram, explain about voltage regulation of buck boost converter using TMSLF2407 DSP controller.		2	5	1,2,3,5,12

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

	Town Lovel 1	26.25%
i)	Blooms Taxonomy Level – 1	36.25%
	Blooms Taxonomy Level – 2	37.50%
iii)	Blooms Taxonomy Level - 3 & 4	
